General primitivity in the mapping class group

Kashyap Rajeevsarathy
IISER Bhopal

Abstract

For $g \geq 2$, let $\operatorname{Mod}\left(S_{g}\right)$ be the mapping class group of the closed orientable surface S_{g} of genus g. A nontrivial $G \in \operatorname{Mod}\left(S_{g}\right)$ is said to be a root of an $F \in \operatorname{Mod}\left(S_{g}\right)$ of degree n if there exists an integer $n>1$ such that $G^{n}=F$. If F does not have any roots, then it is said to be primitive. A natural question is whether one can determine if an arbitrary $F \in \operatorname{Mod}\left(S_{g}\right)$ is primitive and compute the roots of F (up to conjugacy) when it is not primitive. We call this the general primitivity problem in $\operatorname{Mod}\left(S_{g}\right)$. To begin with, we provide a solution to this problem for some special elements in $\operatorname{Mod}\left(S_{g}\right)$ called pseudo-periodic mapping classes which play a critical role in this context. Using this solution, we will formulate an efficient algorithm for solving the general primitivity problem in $\operatorname{Mod}\left(S_{g}\right)$. Furthermore, we will provide realizable bounds on the degrees of pseudo-periodic mapping classes. We will conclude the talk by discussing the normal closures of pseudo-periodic mapping classes.

